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PART I: FRACTAL DIMENSION - 3 WAYS



How do we deduce the complexity of a set K7

Is there some a so that #(Boxes to cover K of side length n=1) ~ n®?

Does that number a correspond to some notion of dimension?



von Koch snowflake - first four generations

LIRS

(Guesses?



von Koch snowflake - first four generations

LIRS

Roughly nlo8(4)/108(3) hoxes of side length 1/n.



von Koch snowflake
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Line segments

n boxes of side length 1/n.

Growth exponent is 1 - as it should be!



Squares

n? boxes of side length 1/n.



Definition: Let K be a compact set. Let N(K,€) denote the minimal
amount of squares of side length € needed to cover K.

The upper Minkowski dimension of K is

log(N (K
dim 7 (K) = lim sup o8N ’6)).
e—0 — log(€)

The lower Minkowski dimension of K is

|  log(N(K, €))
dim /(K ) = lim inf .
dim (5 =t ot = o)

[f the limit exists, then the Minkowski dimension dim;(K) is well-
defined.



A bad example. Let K = {1/n}>°, U{0}.

Countable set, but dim;(K) = 1/2!

dim;(UKy,) # sup dim;(Kp)



Countable sets “should” have dimension 0.

One issue - must cover by squares of same/comparable diameter.

What it we drop this condition?



Definition: Let a > (0. The a-Hausdorff content of a set K is

(
O 0. @)
HY(K) =inf ¢ Y diam(U,)* : K | | J Un
| n=1 n=1

Infimum taken over all countable covers by open sets {Uj,}

Easy exercise: HS, ({0} U{1/n}>2 ) =0 for all & > 0.



Definition: The Hausdorff dimension of a set K is
dimy(K) = sup{a : H*(K) > 0}.

HE(F)

In general, for a compact set K we have dim g (K) < dimp(K).
dimg ({0} U{1/n}52 ) = 0. Inequality can be strict.

Easy exercise: dim g (UK},) = sup dimg(K).



How else can we “hx” Minkowski dimension?

Definition: Let K be a set. Then the packing dimension of K is

( )

O
dimp(K) = coi\r/lgrs sup § dim/(Ky) @ K C U Kn| p-
\ n=1 )

We have modified Minkowski to automatically satisty
dim p(UK;) = sup dimp(K)

For a given compact set K':
dimH(K) S dimp(K) S dlmM(K)



When do packing and Hausdorft dimension disagree?

Dy =0
Dl :(l-(l)[)“ﬂ g1=aD{] l
n=
;.2 g2 —  —  —— [1:2
K(I

Packing dimension sees the “big” part of a set at all scales.

Hausdorff dimension sees the “small” part of the set at all scales.



Definition: A Whitney decomposition of a bounded open set ()
into squares is a collection of open squares {Q,} satisfying:

1. The cubes have pairwise disjoint interior.
2. Q=U0Q);.

3. There exists a constant C so that

I . .
Edlst(Qj, 081) < diam(Q;) < Cdist(Q j, 09)

The collection {@;} need not be literal cubes, so long as the boundaries
of the (); have zero measure.
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Whitney decomposition of ID with dyadic squares.



Whitney decomposition of ID with hyperbolic squares.



Definition: The critical exponent of a Whitney decomposition of the
complement of a compact set K is

a(K) = inf {oz : Zdiam(@)@ < oo}

Example: Y diam(Q)! = t_%diam(l[))t



Upper Minkowski dimension and critical exponents are related as follows:

Theorem: Let K be a compact set with zero Lebesgue measure. Then
dimy(K) = a(K).

Number of small squares surrounding a set K is related to number of small
squares to cover a set.



PART II: HOLOMORPHIC DYNAMICS



Definition: Let f : C — C be an entire function.
1. The nth iterate of f is f°" = f".
2. The orbit of z is the sequence { f"*(2)}.

3.1t f is not a polynomial, f is called transcendental entire, or t.e.f.

Theorem (Picard): If fis at.c.f, then with at most one exceptional
point, f~1({z}) is infinite!

Polynomials much simpler - branched coverings, extend to C.



Definition: Let f : C — C be an entire function.

The Fatou set, F(f), is the set of all points z such that there exists a
ball B = B(z,r) so that { f"*|g} is a normal family.

Normal family ~ equicontinuity of the family { f"}.

Fatou set ~ “Stable” set for dynamics of f.



Definition: Let f : C — C be an entire function.

The Julia set, J(f), is the complement of the Fatou set in C.

Locally no equicontinuity ~ nearby points have different orbits!

Julia set ~ “Chaotic” set for dynamics. Closed set with fractal structure.



Very Simple Example: f(z) = 22

If |z| <1, f™"(2) converges locally uniformly to the constant 0 function -
Fatou set!

If |z| > 1, f™(2) converges locally uniformly to oo - Fatou set!

If |z| = 1, z is near points w with |w| < 1 and |w| > 1 - Julia set the
circle! (Dimension 1).

The unit disk D is an attracting basin.



What happens if we add a small ¢? f.(2) == 2% +c. Try ¢ =1/8.

Critical point 0 belongs to attracting basin - hyperbolicity



Mandelbrot Set: parameter plane for f.(z) = 2%+ ¢

M = {c: fl*(0)is bounded} = {c: J(f¢)is connected}

Fractal structure of boundary = notorious open problems.



Main Cardioid

Julia sets in the main cardioid are quasicircles.

The Fatou set is a single attracting basin - similar to 2% + 1 /8 before.



What happens close to boundary of the main cardioid?

¢ = —0.592280185953905 + 20.429132211809624

Still an attracting basin!



Julia set of f(z) = (exp(z) — 1)/2.

Julia set is a Cantor bouquet. Uncountably many rays out of oo.



Julia set of f(z) = (exp(z) — 1)/2.

dimg(J(f)) =2, but dimg(J(f) \ {endpoints of rays}) = 1!



Julia set of f(z) = (exp(z) — 1)/2.

f € B, Eremenko-Lyubich class. Some similar theory to polynomials.



PART III: DIMENSION IN HOLOMORPHIC DYNAMICS



Theorem (Shishikura): The boundary of the Mandelbrot set has
Hausdorft dimension 2.



Theorem (Shishikura): The supremum of dim g (J (f¢)), ¢ in the main
cardioid, is 2.



Theorem (Shishikura): There exists ¢ in the boundary of the main
cardioid so that dimg(J(fe)) = 2.



Theorem (Ruelle): The function ¢ — dimg (7 (f¢)) is real analytic in
the main cardioid.



Theorem (Sullivan): Special measure on hyperbolic Julia sets.
dimp (T (2% + ¢)) = dimp(T (2% + ¢)) = dimy (T (z° + ¢)) = ¢.



Theorem (Buff & Cheritat): Quadratic family has positive area
Julia sets!

In polynomial dynamics, it is easy to construct examples with Julia sets
with small dimensions, but difficult to approach dimension 2 and positive
area.

In transcendental dynamics, the problem is the opposite!



Theorem (Baker): Julia sets of
t.e.f.s contain non-degenerate con-
tinua. Hausdorfl dimension lower

bounded by 1.

Theorem (Misiurewicz): Julia
set of exp(z) = C.

Theorem (McMullen):
sin(az+0b) family always has positive
area. \exp(z) family always has di-
mension 2. Zero area if there is an
attracting cycle.

Julia set in the cosine family.



Theorem (Stallard): There exist functions in B with Julia set with
dimension arbitrarily close to 1; dimension 1 does not occur in 5. All
dimensions in (1, 2] occur in B.

) — /S exp(exp(t)

Tt — =z

,
N\~
o

Fi(z2) = E(z) — K. Dimension tends to 1 as K increases



Theorem (Rippon, Stallard): If f € B, dimp(J(f)) = 2.

Compare main cardioid results with results for functions in 5.



Theorem (Bishop): There exists a transcendental entire function whose
Julia set has Hausdorff dimension AND packing dimension equal to 1.

The functions are of the form

farn(z) = M222 = DIV /ﬁ (1 - % (}%) nk) |



Theorem (Bishop): There exists a transcendental entire function whose
Julia set has Hausdorff dimension AND packing dimension equal to 1.

The Julia set looks like the following:

1. A Cantor set near the origin with very small dimension.

1 «

2. Boundaries of Fatou components are C+ “almost”-circles.

3. “Buried” points with very small dimension.



Theorem (Bishop): There exists a transcendental entire function whose
Julia set has Hausdorff dimension AND packing dimension equal to 1.

The Julia set looks like the following:

1. A Cantor set near the origin with very small dimension.

2. Boundaries of Fatou components are C! “almost”-circles.
3. “Buried” points with very small dimension.

The dimension lives on the C't almost-circles. Dynamics here are simple.



Theorem (B.): There exists transcendental entire functions with pack-
ing dimension in (1, 2).



Theorem (B.): There exists transcendental entire functions with pack-
ing dimension in (1,2). The set of values attained is dense in (1, 2).



Theorem (B.): There exists transcendental entire functions with pack-
ing dimension in (1,2). The set of values attained is dense in (1, 2). More-
over, the packing dimension and Hausdorff dimension may be chosen to
be arbitrarily close together (not necessarily equal).



Theorem (B.): There exists transcendental entire functions with pack-
ing dimension in (1,2). The set of values attained is dense in (1, 2). More-
over, the packing dimension and Hausdorff dimension may be chosen to
be arbitrarily close together (not necessarily equal)..
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Previous chart of attained dimensions.



Theorem (B.): There exists transcendental entire functions with pack-
ing dimension in (1,2). The set of values attained is dense in (1, 2). More-
over, the packing dimension and Hausdorff dimension may be chosen to
be arbitrarily close together (not necessarily equal)..

| Hausdortt 2

Updated possible dimensions chart.



Theorem (B.): There exists transcendental entire functions with pack-
ing dimension in (1,2). The set of values attained is dense in (1, 2). More-
over, the packing dimension and Hausdorff dimension may be chosen to
be arbitrarily close together.

The Julia set looks like the following:
1. A fractal quasicircle - the boundary of an attracting basin
2. Boundaries of Fatou components are C'* curves - some not circular!

3. “Buried” points - the dimension of the set lives here!



